トリエタノールアミンを含むアルカリジンケート浴からのZn-Co合金電析挙動
スポンサーリンク
概要
- 論文の詳細を見る
Electrodeposition behavior of Zn-Co alloys was investigated at current densities of 2–500 A∙m−2 and a charge of 5 × 104 C∙m−2 in an unagitated zincate solution containing triethanolamine, which forms a stable complex with Co2+ ions at 308 K. At low current densities below 5 A∙m–2, the Zn-Co alloy exhibited normal codeposition, wherein electrochemically more noble Co deposited preferentially, while at high current densities above 6 A∙m–2, it exhibited anomalous codeposition, wherein less noble Zn deposited preferentially. The current efficiency for Zn-Co alloy deposition was low to be about 20% in the region of nomal codeposition at low current densities, while it was 95% in the region of anomalous codeposition at high current densities. In the region of anomalous codeposition at high current densities, the partial polarization curves for Co deposition and H2 evolution were significantly shifted to less noble direction by coexisting of Zn2+ ions, showing the formation of an inhibitor for deposition, which results from Zn2+ ions in the cathode layer. In contrast, in the region of normal codeposition at low current densities below 5 A∙m–2, the underpotential deposition of Zn apparently occurred with Co. Because Zn-Co alloys are composed of the stable intermetallic compounds of CoZn13 and Co5Zn21, the activity coefficient of Zn in the deposit appears to decrease remarkably.
著者
-
中野 博昭
Faculty of Engineering, Kyushu University
-
大上 悟
Faculty of Engineering, Kyushu University
-
柴田 至徳
Faculty of Engineering, Kyushu University
-
荒川 真吾
Faculty of Engineering, Kyushu University
-
小林 繁夫
Faculty of Engineering, Kyushu Sangyo University