Robust Scene Categorization via Scale-Rotation Invariant Generative Model and Kernel Sparse Representation Classification
スポンサーリンク
概要
- 論文の詳細を見る
This paper presents a novel scale-rotation invariant generative model (SRIGM) and a kernel sparse representation classification (KSRC) method for scene categorization. Recently the sparse representation classification (SRC) methods have been highly successful in a number of image processing tasks. Despite its popularity, the SRC framework lucks the abilities to handle multi-class data with high inter-class similarity or high intra-class variation. The kernel random coordinate descent (KRCD) algorithm is proposed for l1 minimization in the kernel space under the KSRC framework. It allows the proposed method to obtain satisfactory classification accuracy when inter-class similarity is high. The training samples are partitioned in multiple scales and rotated in different resolutions to create a generative model that is invariant to scale and rotation changes. This model enables the KSRC framework to overcome the high intra-class variation problem for scene categorization. The experimental results show the proposed method obtains more stable performances than other existing state-of-art scene categorization methods.
著者
-
CHAI Yi
Department of Computer Science and Engineering
-
KUANG Jinjun
College of Automation, Chongqing University