An Adaptation Method for Morphological Opening Filters with a Smoothness Penalty on Structuring Elements
スポンサーリンク
概要
- 論文の詳細を見る
This paper proposes an adaptation method for structuring elements of morphological filters. A structuring element of a morphological filter specifies a shape of local structures that is eliminated or preserved in the output. The adaptation of the structuring element is hence a crucial problem for image denoising using morphological filters. Existing adaptation methods for structuring elements require preliminary training using example images. We propose an adaptation method for structuring elements of morphological opening filters that does not require such training. In our approach, the opening filter is interpreted as an approximation method with the union of the structuring elements. In order to eliminate noise components, a penalty defined from an assumption of image smoothness is imposed on the structuring element. Image denoising is achieved through decreasing the objective function, which is the sum of an approximation error term and the penalty function. In experiments, we use the proposed method to demonstrate positive impulsive noise reduction from images.
著者
-
Iiguni Youji
Graduate School Of Engineering Science Osaka University
-
Nakashizuka Makoto
Faculty Of Engineering Niigata University
-
NAKASHIZUKA Makoto
Faculty of Engineering, Chiba Institute of Technology
-
ASHIHARA Yu
Graduate School of Engineering Science, Osaka University
関連論文
- Improvement of Speech Quality in Distance-Based Howling Canceller
- Moment Invariants of the Weighted Image
- Speech Enhancement Based on MAP Estimation Using a Variable Speech Distribution(Papers Selected from the 21st Symposium on Signal Processing)
- Image Enlargement by Nonlinear Frequency Extrapolation with Morphological Operators
- Shift-Invariant Sparse Image Representations Using Tree-Structured Dictionaries
- A Camera Calibration Method Using Parallelogramatic Grid Points
- A High Speech Quality Distance-Based Howling Canceller with Adaptive Cascade Notch Filter and Silent Pilot Signal
- Convergence Vectors in System Identification with an NLMS Algorithm for Sinusoidal Inputs
- Convergence vector of normalized least-mean-square algorithm for predicting deterministic sinusoidal signals
- Supervised Single-Channel Speech Separation via Sparse Decomposition Using Periodic Signal Models
- Stationary and Non-stationary Wide-Band Noise Reduction Using Zero Phase Signal
- Supervised Single-Channel Speech Separation via Sparse Decomposition Using Periodic Signal Models
- Single channel blind source separation of deterministic sinusoidal signals with independent component analysis
- An Adaptation Method for Morphological Opening Filters with a Smoothness Penalty on Structuring Elements
- A Comb Filter with Adaptive Notch Gain and Bandwidth
- An Adaptive Comb Filter with Flexible Notch Gain