Two Heuristic Algorithms for the Minimum Initial Marking Problem of Timed Petri Nets
スポンサーリンク
概要
- 論文の詳細を見る
A timed Petri net, an extended model of an ordinary Petri net with introduction of discrete time delay in firing activity, is practically useful in performance evaluation of real-time systems and so on. Unfortunately though, it is often too difficult to solve (efficiently) even most basic problems in timed Petri net theory. This motivates us to do research on analyzing complexity of Petri net problems and on designing efficient and/or heuristic algorithms. The minimum initial marking problem of timed Petri nets (TPMIM) is defined as follows: "Given a timed Petri net, a firing count vector X and a nonnegative integer π, find a minimum initial marking (an initial marking with the minimum total token number) among those initial ones M each of which satisfies that there is a firing scheduling which is legal on M with respect to X and whose completion time is no more than π, and, if any, find such a firing scheduling." In a production system like factory automation, economical distribution of initial resources, from which a schedule of job-processings is executable, can be formulated as TPMIM. The subject of the paper is to propose two pseudo-polynomial time algorithms TPM and TMDLO for TPMIM, and to evaluate them by means of computer experiment. Each of the two algorithms finds an initial marking and a firing sequence by means of algorithms for MIM (the initial marking problem for non-timed Petri nets), and then converts it to a firing scheduling of a given timed Petri net. It is shown through our computer experiments that TPM has highest capability among our implemented algorithms including TPM and TMDLO.
著者
-
Taoka Satoshi
Graduate School Of Engineering Hiroshima University
-
YAMAUCHI Masahiro
School of Engineering, Kinki University
-
Ochiiwa Satoru
Graduate School Of Engineering Hiroshima University
-
Watanabe Toshimasa
Graduate School Of Engineering Hiroshima Univ.
関連論文
- Time Complexity Analysis of the Legal Firing Sequence Problem of Petri Nets with Inhibitor Arcs(Concurrent Systems,Concurrent/Hybrid Systems: Theory and Applications)
- A 2-Approximation Algorithm 2-ABIS for 2-Vertex-Connectivity Augmentation of Specified Vertices in a Graph
- A (2 - 2/|L|)-Approximation Algorithm R2VS or R2ES to 2-Vertex- or 2-Edge-Connect Specified Vertices in a Graph
- Efficiently Computing Minimal-Support Nonnegative Integer Invariants of Petri Nets
- Two Enhanced Heuristic Algorithms for the Minimum Initial Marking Problem of Petri Nets
- Improved Heuristic Algorithms for Minimizing Initial Markings of Petri Nets(Concurrent/Hybrid Systems : Theory and Applications)
- Enhancing PC Cluster-Based Parallel Branch-and-Bound Algorithms for the Graph Coloring Problem
- Enhanced Approximation Algorithms for Maximum Weight Matchings of Graphs
- Performance Comparison of Algorithms for the Dynamic Shortest Path Problem(Selected Papers from the 19th Workshop on Circuits and Systems in Karuizawa)
- On Minimum k-Edge-Connectivity Augmentation for Specified Vertices of a Graph with Upper Bounds on Vertex-Degree(Selected Papers from the 18th Workshop on Circuits and Systems in Karuizawa)
- A 2-Approximation Algorithm to (k+1)-Edge-Connect a Specified Set of Vertices in a k-Edge-Connected Graph(Discrete Mathematics and Its Applications)
- A Linear Time Algorithm for Bi-Connectivity Augmentation of Graphs with Upper Bounds on Vertex-Degree Increase(Selected Papers from the 17th Workshop on Circuits and Systems in Karuizawa)
- Experimental Evaluation of Maximum-Supply Partitioning Algorithms for Demand-Supply Graphs(Selected Papers from the 18th Workshop on Circuits and Systems in Karuizawa)
- Siphon-Trap-Based Algorithms for Efficiently Computing Petri Net Invariants(Selected Papers from the 17th Workshop on Circuits and Systems in Karuizawa)
- The Marking Construction Problem of Petri Nets and Its Heuristic Algorithms
- A Fast Algorithm for Augmenting Edge-Connectivity by One with Bipartition Constraints
- Computing-Based Performance Analysis of Approximation Algorithms for the Minimum Weight Vertex Cover Problem of Graphs
- Two Heuristic Algorithms for the Minimum Initial Marking Problem of Timed Petri Nets