An EM Algorithm-Based Disintegrated Channel Estimator for OFDM AF Cooperative Relaying
スポンサーリンク
概要
- 論文の詳細を見る
The cooperative orthogonal frequency-division multiplexing (OFDM) relaying system is widely regarded as a key design for future broadband mobile cellular systems. This paper focuses on channel estimation in such a system that uses amplify-and-forward (AF) as the relaying strategy. In the cooperative AF relaying, the destination requires the individual (disintegrated) channel state information (CSI) of the source-relay (S-R) and relay-destination (R-D) links for optimum combination of the signals received from source and relay. Traditionally, the disintegrated CSIs are obtained with two channel estimators: one at the relay and the other at the destination. That is, the CSI of the S-R link is estimated at relay and passed to destination, and the CSI of the R-D link is estimated at destination with the help of pilot symbols transmitted by relay. In this paper, a new disintegrated channel estimator is proposed; based on an expectation-maximization (EM) algorithm, the disintegrated CSIs can be estimated solely by the estimator at destination. Therefore, the new method requires neither signaling overhead for passing the CSI of the S-R link to destination nor pilot symbols for the estimation of the R-D link. Computer simulations show that the proposed estimator works well under the signal-to-noise ratios of interest.
著者
-
Sheen Wern-ho
Department Of Information And Communication Engineering Chaoyang University Of Technology
-
SHEU Jeng-Shin
Department of Computer Science and Information Engineering, National Yunlin University of Science & Technology
関連論文
- New Factorization Algorithms for Channel-Factorization Aided MMSE Receiver in MIMO Systems
- An EM Algorithm-Based Disintegrated Channel Estimator for OFDM AF Cooperative Relaying