Scalar Equal Gain Transmission and the Quantized Equal Gain Codebooks for MISO and MIMO Communications
スポンサーリンク
概要
- 論文の詳細を見る
The conventional Equal Gain Transmission and Maximum Ratio Combining (EGT/MRC) requires nonlinear optimization to find the optimal beamforming vector at the receiver. This study shows that the optimal beamforming vector can be easily formed by the geometrical concepts. Accordingly, a novel transmission/reception scheme, called the Scalar Equal Gain Transmission and Generalized Maximum Ratio Combining (SEGT/GMRC), is presented and examined. The Monte-Carlo simulations validate the theory and it is shown that the optimal beamforming vector formed by SEGT is the same as the one determined by the nonlinear optimizer. The closed-form analytical error performance of the SEGT/GMRC scheme is also derived for multiple input single output (MISO) communications. This study also introduces the new limited-feedback geometrical codebooks, called the Quantized Equal gain (QE) codebooks, which can be easily installed as symbol mappers. These codebooks are based on quantized SEGT/GMRC, which eliminates the need for any iterative searching scheme, such as exhaustive search at the receiver. The minimum amount of feedback bits depends on the modulation scheme, where a general M-PSK modulation requires at least log 2Mbits per quantized phase angle. It is also shown that BPSK modulation requires at least 2bits per quantized phase angle for near-optimal performance.