How to Estimate the Number of Self-Avoiding Walks over 10100? Use Random Walks
スポンサーリンク
概要
- 論文の詳細を見る
Counting the number of N-step self-avoiding walks (SAWs) on a lattice is one of the most difficult problems of enumerative combinatorics. Once we give up calculating the exact number of them, however, we have a chance to apply powerful computational methods of statistical mechanics to this problem. In this paper, we develop a statistical enumeration method for SAWs using the multicanonical Monte Carlo method. A key part of this method is to expand the configuration space of SAWs to random walks, the exact number of which is known. Using this method, we estimate a number of N-step SAWs on a square lattice, cN, up to N=256. The value of c256 is 5.6(1)× 10108 (the number in the parentheses is the statistical error of the last digit) and this is larger than one googol (10100).
著者
-
Kikuchi Macoto
Graduate School Of Science Osaka University:cybermedia Center Osaka University:graduate School Of Fr
-
Shirai Nobu
Graduate School Of Science Osaka University:cybermedia Center Osaka University
-
KIKUCHI Macoto
Graduate School of Science, Osaka University
関連論文
- 2P056 Intrinsically Disordered Proteinの格子モデル(蛋白質-物性(安定性,折れたたみなど),第48回日本生物物理学会年会)
- 1F1648 格子モデルを用いた天然変性タンパク質の結合過程に関する研究(数理生物学1,第49回日本生物物理学会年会)
- 1B1534 天然変性タンパク質の構造ゆらぎを生かした密度変化誘起型シグナル伝達過程(蛋白質-構造機能相関I,口頭発表,日本生物物理学会第50回年会(2012年度))
- How to Estimate the Number of Self-Avoiding Walks over 10100? Use Random Walks