Efficient Parameter Optimization by Applying Estimation Error Reduction to Design of Experiments for Image Processing
スポンサーリンク
概要
- 論文の詳細を見る
An efficient method for optimizing the parameters used for image processing is described that applies estimation error reduction to design of experiments (DOE). The traditional DOE optimization method is used to estimate the evaluation scores of all parameter sets and to rank them using a small number of actual scores. Because the search for the optimal parameter set is done in the order of the estimated scores for all parameter sets, the ranking accuracy, which strongly depends on the estimation error, is important. We introduce a function for reducing the estimation errors for the higher ranked parameter sets. The proposed parameter optimization method was evaluated by applying it to parameter optimization for industrial image defect area extraction. Evaluation using three datasets showed that the parameter sets selected by the proposed method had close to the highest actual score and that the number of image processings was 1/57 that of a full search procedure.
- 電気学会 ; 1972-の論文
電気学会 ; 1972- | 論文
- A Novel Background Subtraction Method for Moving Vehicle Detection (特集 イノベーションを支える最新の計測技術2012)
- 有機フッ素化合物の気液界面吸着量とプラズマによる分解速度の関係
- 微細藻類がポリマーがいし外被材の絶縁特性に与える影響の評価
- センサ付開閉器の負荷情報を活用した配電系統のオンライン構成変更
- 可溶性フタロシアニンを用いたバルクヘテロ型有機薄膜太陽電池におけるアクセプタ材料依存性