Existence of Global Decaying Solutions to the Cauchy Problem for a Nonlinear Dissipative Wave Equation of Klein-Gordon Type with a Derivative Nonlinearity
スポンサーリンク
概要
- 論文の詳細を見る
We prove the existence of global decaying solutions to the Cauchy problem for the wave equation of Klein-Gordon type with a nonlinear dissipation and a derivative nonlinearity. To derive required estimates of solutions we employ a delicate 'loan' method.
- 日本数学会函数方程式論分科会の論文
著者
関連論文
- Some Superconvergence for a Galerkin Method by Averaging Gradients in One Dimensional Problems
- Existence of Global Decaying Solutions to the Cauchy Problem for a Nonlinear Dissipative Wave Equation of Klein-Gordon Type with a Derivative Nonlinearity