A Framework of Recommender System Using Interactive Evolutionary Computation
スポンサーリンク
概要
- 論文の詳細を見る
This paper proposes the recommender system to retrieve multimedia data. Recommender systems using the collaborative filtering don't learn user's sensibility. In contrast, the system proposed us can learn user's sensibility. The system uses Kansei retrieval agent using the co-evaluation model and the only-evaluation model. The agent has a Kansei model controlled by Kansei parameters. These models are proposed in previous study, and are provided enough evidence of effectiveness. However, the previous study has an issue, how the agent is coded. Therefore, we propose a method of NPD cording. In this method, the agent has some elements. Each element has N (Negative) or P (Positive) or D (Don't care). In addition, this paper provides evidence of effectiveness the system and optimization performance of Kansei retrieval agent in simulations. In this simulation, we replace a real user with a simulant user. The simulant user is coded in the same way as an agent. We examined error between cords of the Kansei retrieval agent and cords of the mutual user. As a result, we confirmed what the error attenuates that the mutual user evaluate the presented data. In consequence, this paper confirmed that the system could present the data preferred the user.
著者
関連論文
- 第4回ファジィ学問塾開催報告
- ユーザの主観性を考慮したインタフェースとその応用システムに関する研究
- 「記憶と忘却」を繰り返し発想し続けるシステム : 記憶パターン更新型カオスニューラルネットワークと作曲システムへの応用
- 第15回曖昧な気持ちに挑むワークショップ開催報告
- Kansei Retrieval Model using a Neural Network
- A Framework of Recommender System Using Interactive Evolutionary Computation
- ニューラルネットを用いた感性ロボットの自発的行動と欲求制御 (特集 感性ロボティクス)