Mechanical Properties of Sintered Martensitic Stainless Steel Fabricated by Metal Injection Molding Process
スポンサーリンク
概要
- 論文の詳細を見る
The effects of sintering and heat treatment conditions on the mechanical properties of martensitic stainless steel fabricated by metal injection molding (MIM) process were investigated. The specimens were made by injecting the mixture of gas-atomized powders of 5 µm and 10 µm in mean particle diameter and a polymer binder into a metallic mold. The injection molded compacts were debound in air at various temperatures between 533 K and 593 K for 7.2 ks. They were sintered in vacuum at various temperatures between 1273 K and 1623 K for 7.2 ks. And the specimens were tempered at various temperatures between 373 K and 973 K after vacuum hardening. The density of the as-sintered compact of 5 µm powder was higher than that of the as-sintered compact of 10 µm powder. In case of the as-sintered compact of 5 µm powder, the tensile strength depended on the change in density, and the tensile strength of the compact sintered at 1373 K was 1600 MPa. On the other hand, in the case of the as-sintered compact of 10 µm powder, the tensile strength was rather lower than that of the as-sintered compact of 5 µm powder because of coarsening of the grain size. The tensile strength and elongation of the heat-treated compact of 5 µm powder were 1800 MPa and 12 %, respectively. The tensile strength and elongation of the heat-treated compact of 10 µm powder were 1680 MPa and 10 %, respectively. Thus, the mechanical properties of the compacts were approximately equal to those of the wrought material.