Internal Transport Barrier Analysis Including Impurities in Tokamak and Helical Reactor Plasmas
スポンサーリンク
概要
- 論文の詳細を見る
The operation with Internal Transport Barrier (ITB) is expected as a high performance operation. ITB is utilized to improve core plasma confinement in the reversed magnetic shear. It is considered that the changes of core plasma profile by the ITB cause changes of impurity transport. In a large fusion reactor, high-Z materials will be used as plasma facing components because high loads of heat and particles concentrate there. However, high-Z impurities from these components cause large radiation loss and dilute the fuel even if the amount of impurities is small. Therefore, in this study, firstly, the ITB formation which includes the effects of the magnetic shear and perturbed profiles by the pellet injection was simulated using the Toroidal Transport Analysis Linkage code TOTAL. Secondly, we analyzed transport of the tungsten impurities using an impurity model in TOTAL code, and compared the impurity profile in the case with ITB to the one without ITB in the tokamak reactor. The impurities decreased in the ITB formation region when ITB was formed, and the outward flux of total impurity density was observed there. It can be expected that outward flux of impurities is generated by the temperature and the density gradients.
著者
-
Oishi Tetsutarou
Nagoya University
-
Arimoto Hideki
Nagoya University
-
YAMAZAKI Kozo
Nagoya University
-
SHOJI Tatsuo
Nagoya University
-
OISHI Tetsutarou
Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
-
HORI Yoshihito
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
-
YAMAZAKI Kozo
Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
-
SHOJI Tatsuo
Nagoya University, Furo-cho, Chikusaku, Nagoya 464-8603, Japan
関連論文
- Transport Analysis of High-Z Impurities Including Sawtooth Effects in a Tokamak System
- Time-Dependent NBI-Heating Simulation of LHD Plasmas Using Toroidal Transport Analysis Linkage Code
- Internal Transport Barrier Formation and Pellet Injection Simulation in Helical and Tokamak Reactors
- Assessment of Spherical Tokamak Reactors Comparing with Other Fusion Power Plants
- Life Cycle Assessment for Energy Payback of Spherical Tokamak Reactors
- Integrated Analysis on the Current Profile and the Operational Scenario of D-^3He Spherical Tokamak Reactors
- Confinement Analysis of Spherical Tokamak-Stellarator Hybrid Configurations
- Low Aspect Ratio Plasma in Tokamak-Helical Hybrid Device TOKASTAR-2
- Neoclassical Tearing Mode Analysis in Spherical Tokamak Burning Plasmas
- Internal Transport Barrier Analysis Including Impurities in Tokamak and Helical Reactor Plasmas
- Simulation of the Fuel Isotope Effect on the Confinement Property in DT Fusion Reactors
- Construction and Plasma Initiation of the Tokamak-Helical Hybrid Device TOKASTAR-2
- Analysis of Internal Transport Barrier Formation in Tokamak Reactor Plasmas
- Critical Issues of Burning Plasma, Engineering, Economic and Environmental Assessments on Steady-State Fusion Reactors
- Comparative Study of Cost Models for Tokamak DEMO Fusion Reactors
- Economical and Life-Cycle Energy Assessment of Magnetic Fusion Power Reactors