セクタ形非線形を持つ離散値形における非整数倍周期リミットサイクルについて
スポンサーリンク
概要
- 論文の詳細を見る
This paper extends the concept of the discrete describing function proposed previously for the analysis of sector type nonlinear sampled data control systems. The previously defined functions were only applicable to the signals which have sub-harmonics of sampling frequencies. We remove the restriction on frequencies and make it possible to apply to an arbitrary frequency. All frequencies less than a half of the sampling frequency are divided into many groups.<BR>For frequencies that belong to the same group, the evaluation of the discrete describing function provides the same region on the complex-plane. Practically, it is enough to consider a few shapes of these regions. Drawing the inverse Nyquist diagram of linear part of the system on the same complex-plane, limit cycles are predicted by the well-known. graphical method.<BR>To clarify the description, a few examples are given. The simulation results show that our proposed method is useful for predicting limit cycles which have a period not equal to the sampling period multiplied by an integer.
- システム制御情報学会の論文
著者
関連論文
- 雑音構造解明のための新しい雑音情報
- パルス伝達関数システムの次数決定にAICを適用した場合の問題点について
- 非線形離散値フィ-ドバックシステムにおけるリミットサイクルの予側と決定
- 未知入力オブザ-バを用いたフィ-ドバック制御系のロバスト設計 (オブザ-バ・状態推定と産業応用)
- 2層構造をもつ双曲形分布定数系の過渡解析
- セクタ形非線形を持つ離散値形における非整数倍周期リミットサイクルについて