分子動力学シミュレーションを用いたナノコンポジット材料の粒子分散メカニズムの検討
スポンサーリンク
概要
- 論文の詳細を見る
We studied the particle dispersion mechanism of polyamide-imide/silica nano-composite material by using molecular-dynamics simulation technique based on Newtonian dynamics and quantum mechanics. In simulations, adhesive fracture energies at the interfaces between silica and solvents were calculated, and Brownian motions of silica particles were simulated to clarify dispersion properties. The simulation results showed that the colloidal state of silica was maintained by covering the silica surface with a new low hygroscopicity solvent and that the chemical structure of polymer contributed to the dispersion of silica. It is found that the results obtained from molecular dynamics agree well with those obtained by experiments, and that molecular-dynamics simulation technique will become very useful for the development of nano-composite materials in the future.