AN APPROXIMATE HILBERT TRANSFORM AND ITS INVERSION
スポンサーリンク
概要
- 論文の詳細を見る
If η > 0 and f is in a certain space of generalized functions, define{F_η }(x) = ‹ {f(t), {{t - x} \over {{{(t - x)}^2} + {η ^2}}}} › .It is shown that\mathop {\lim }\limits<SUB>η → 0 + </SUB> \left( { - {1 \over {{π ^2}}}} \right)P∫<SUB> - ∞ </SUB>^∞ {{{{F_η }(x)dx} \over {x - y}}} = f(y)in the weak distributional sense.
- 東北大学大学院理学研究科数学専攻の論文
著者
-
Pandey J.
Department Of Chemistry University Of Allahabad
-
HUGHES EDWARD
DEPARTMENT OF MATHEMATICS CARLETON UNIVERSITY
-
PANDEY J.
DEPARTMENT OF MATHEMATICS CARLETON UNIVERSITY
関連論文
- THE INFLUENCE OF CATCHMENT ON ECOSYSTEM PROPERTIES OF A TROPICAL FRESH WATER LAKE
- Interatomic Forces and Cohesive Energy of Diatomic Polar Crystals
- AN APPROXIMATE HILBERT TRANSFORM AND ITS INVERSION