REMARKS ON POSITIVE CONES ASSOCIATED WITH A VON NEUMANN ALGEBRA
スポンサーリンク
概要
- 論文の詳細を見る
Let M be a von Neumann algebra with a cyclic and separating vector ξ0 and J# (resp. Jb) be the closure of M+ξ0 (resp. M′+ξ0). It is shown that the map: ξ∈J#→ωξ∈M+* is a homeomorphism with respect to the norm topologies. It is also shown that J# can be replaced by Jb if M is finite.
- 東北大学大学院理学研究科数学専攻の論文
著者
-
Kosaki Hideki
Department Of Mathematics College Of General Education Kyushu University
-
KOSAKI HIDEKI
DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF KANSAS LAWRENCE
関連論文
- Inequalities for the Schatten $p$-norm V
- Unitarily Invariant Norms under Which the Map $A\to \vert A\vert $ is Lipschitz Continuous
- Linear Radon-Nikodym Theorems for States on a von Neumann Algebra
- REMARKS ON POSITIVE CONES ASSOCIATED WITH A VON NEUMANN ALGEBRA