A GENERAL DESCRIPTION OF TOTALLY GEODESIC FOLIATIONS
スポンサーリンク
概要
- 論文の詳細を見る
We give some general concepts and results for totally geodesic foliations F on complete Riemannian manifolds. In particular, we reduce the problem to that of a generalization of the theory of principal connections. This enables us to show that the global geometry of F is related to certain sheaves of germs of local Killing vector fields for the Riemannian structure along the leaves. Further, we define a cohomology group {H<SUB>tg</SUB>}^ *, and natural mappings from {H<SUB>tg</SUB>}^ * into the de Rham cohomologies of the leaves, such that the characteristic classes in {H<SUB>tg</SUB>}^ * are mapped to the characteristic classes of the leaves.
- 東北大学大学院理学研究科数学専攻の論文
著者
-
CAIRNS GRANT
MATHÉMATIQUES UNIVERSITÉ DES SCIENCES ET TECHNIQUES DU LANGUEDOC PLACE E. BATAILLON
-
CAIRNS GRANT
MATHÉMATIQUES UNIVERSITÉ DES SCIENCES ET TECHNIQUES DU LANGUEDOC PLACE E. BATAILLON