非一様電場を含む有限ジャイロ半径方程式とフルート型不安定性の安定化効果
スポンサーリンク
概要
- 論文の詳細を見る
For the flute instabilities of a plasma in the presence of inhomogeneous electric field E<SUB>o</SUB> (x) and a uniform magnetic field B, the Finite Gyro-Radius (F. G. R.) eigenvalue equation is derived on the basis of the simple guiding center picture with appropriate F. G. R. corrections. This is the same equation which Rosenbluth and Simon derived by using a formal expansion of the Viasov equations. Then, the stable condition is examined in the case of b<SUP>2</SUP><<1, dV<SUB>E</SUB>/dx=const and k≡-dln<SUP>ρ</SUP>/dx-const, where ρ is the mass density, b<SUP>2</SUP>=B<SUP>2</SUP>/4πρc<SUP>2</SUP> and V<SUB>E</SUB>=-cE<SUB>o</SUB> (x) /B, with the light velocity c. It is concluded that the presence of the inhomogeneous electric field always tend to destroy the F.G.R.stabilizing effect irrespective of the sign of dV<SUB>E</SUB>/dx.
- 社団法人 プラズマ・核融合学会の論文