From an Itô type calculus for Gaussian processes to integrals of log-normal processes increasing in the convex order
スポンサーリンク
概要
- 論文の詳細を見る
We present an Itô type formula for a Gaussian process, in which only the one-marginals of the Gaussian process are involved. Thus, this formula is well adapted to the study of processes increasing in the convex order, in a Gaussian framework. In particular, we give conditions ensuring that processes defined as integrals, with respect to one parameter, of exponentials of two-parameter Gaussian processes, are increasing in the convex order with respect to the other parameter. Finally, we construct Gaussian sheets allowing to exhibit martingales with the same one-marginals as the previously defined processes.
著者
-
Hirsch Francis
Laboratoire dAnalyse et Probabilités, Université dÉvry - Val dEssonne
-
Roynette Bernard
Institut Elie Cartan, Université Henri Poincaré
-
Yor Marc
Institut Universitaire de France, Laboratoire de Probabilités et Modèles Aléatoires, Université Pari
-
Roynette Bernard
Institut Elie Cartan Universite Henri Poincare
-
Hirsch Francis
Laboratoire D'analyse Et Probabilites Universite D'evry - Val D'essonne
-
Yor Marc
Institut Universitaire De France Laboratoire De Probabilites Et Modeles Aleatoires Universite Paris
関連論文
- From an Itô type calculus for Gaussian processes to integrals of log-normal processes increasing in the convex order
- From an Ito type calculus for Gaussian processes to integrals of log-normal processes increasing in the convex order