Spectral Analysis of Random Sparse Matrices
スポンサーリンク
概要
- 論文の詳細を見る
We study n×n random symmetric matrices whose entries above the diagonal are iid random variables each of which takes 1 with probability p and 0 with probability 1-p, for a given density parameter p=α/n for sufficiently large α. For a given such matrix A, we consider a matrix A that is obtained by removing some rows and corresponding columns with too many value 1 entries. Then for this A, we show that the largest eigenvalue is asymptotically close to α+1 and its eigenvector is almost parallel to all one vector (1,...,1).
論文 | ランダム
- 映像的演出家--ジョルジュ・ストレ-レルについて (世界の演出家)
- 不可視のシステム--ダ-リオ・フォ-の作品を中心に (名作の中のかね--外国篇)
- マイムと日本の演劇風土 (芝居のマイム)
- 笑いの分析 (笑いの採集)
- サチュロス劇「甕(かめ)」 (一幕物のすすめ)