Re-examination of method of kinetic analysis on the rate of stepwise reduction of a single sinter particle with CO-CO2-N2 gas mixture.
スポンサーリンク
概要
- 論文の詳細を見る
In a previous work, single particles of commercial sinter were reduced stepwise with CO-CO2-N2 gas mixtures. In the analysis, the reduction of calcium ferrite (CF) was not taken into consideration. Values of chemical reaction rate constants kc and effective diffusivities De in the unreacted-core shrinking model were determined by trial and error so that the calculated reduction curve might agree with the experimental one.In the present work, the method of the kinetic analysis are re-examined:(1) A new method to obtain the rate parameter values in a prescribed way has been developed and the experimental data have been statistically analyzed; values of kc and De have been determined so as to minimize the difference area between calculated and experimental reduction curves.(2) Final fractional reduction in the hematite to magnetite stage under rising temperature conditions up to 1 173 K, Ff', was measured after measuring the one at a predetermined temperature, Ff ; below about 1 003 K, CF is hardly reduced and practically Ff =0.7 when oxygen reducible in this stage is assumed to be come from hematite and CF. The ratio Ff /Ff' is also given as a function of reduction temperature.(3) Some additional experiments on single particle stepwise reduction to the previous work were done in a temperature range from 753 to 1 333 K and rate parameter values have been re-evaluated by the above-stated method in consideration of the facts in (2); temperature dependencies of kc and De are presented.
著者
-
Usui Tateo
Department Of Materials Science And Processing Graduate School Of Engineering Osaka University
-
Ohmi Munekazu
Faculty Engineering Osaka University
-
Morita Zen-ichiro
Department of Materials Science and Processing, Faculty of Engineering, Osaka University
-
Kaneda Shinji
Graduate School, Osaka University
-
Ohmasa Mitsushi
Graduate School, Osaka University
-
Usui Tateo
Department of Materials Science and Processing, Faculty of Engineering, Osaka University
関連論文
- Time-Dependent Wall Shear Stress in a Duct with Arbitrary Cross-Section
- Laminar-Turbulent Transition and Velocity Profiles of Oscillatory Rectangular Duct Flows
- Mechanism of Dioxins/Furans Formation at High Temperature in Combustion Processes
- Flow Pattern and Frictional Losses in Pulsating Pipe Flow : Part 5, Wall Shear Stress and Flow Pattern in a Laminar Flow
- Flow Pattern and Frictional Losses in Pulsating Pipe Flow : Part l, Effect of Pulsating Frequency on the Turbulent Flow Pattern
- A Experimental Study of Velocity Distribution and Inlet Length in the Inlet Region of Laminar Oscillatory Pipe Flow : Series B : Fluid Engineering, Heat Transfer, Combustion, Power, Thermophysical, Properties
- Turbulent Slug and Velocity Field in the Inlet Region for Pulsatile Pipe Flow : Fluids Engineering
- Flow Patterns and Frictional Losses in an Oscillating Pipe Flow
- Transition to Turbulence in a Pulsatile Pipe Flow Part 1,Wave Forms and Distribution of Pulsatile Velocities near Transition Region
- Velocity Distribution and Reattachment Length in an Oscillatory Pipe Flow through a Plate Orifice
- Effect of Aluminum, Titanium or Silicon Addition on Nitrogen Removal from Molten Iron
- Nitrogen Removal from Molten Iron to Gas Phase through CaO-Al_2O_3-CaF_2 Melt
- Influence of Neodymium on the Deoxidation and Desulfurization Equilibria of Liquid Iron in the Fe-Nd-O-S(-Al) System at 1873K
- Deoxidation and Desulfurization Equilibria of Liquid Iron by Calcium
- Effect of Silicon and Carbon on the Evaporation Rate of Copper in Molten Iron
- Estimation of the Evaporation Rate of Copper and Tin from Molten Iron-Silicon Alloy
- Flow Pattern and Frictional Losses in Pulsating Pipe Flow : Part 7 Wall Shear Stress in a Turbulent Flow
- Flow Pattern and Frictional Losses in Pulsating Pipe Flow : Part 2, Effect of Pulsating Frequency on the Turbulent Frictional Losses
- Transition to Turbulence in a Pulsatile Pipe Flow : Part 2,Characteristics of Reversing Flow Accompanied by Relaminarization
- Critical Reynolds Number in an Oscillating Pipe Flow
- Free Oscillatory Flow Across a Plate Orifice in U-Shaped Tube and the Resistance Law
- Transition to Turbulence in a Pulsatile Pipe Flow : 3rd Report, Flow Regimes and the Conditions Describing the Generation and Decay of Turbulence
- Flow Pattern and Frictional Losses in Pulsating Pipe Flow : Part 3, General Representation of Turbulent Flow Pattern
- Analysis of Free Oscillating Flow in a U-Shaped Tube
- Turbulence Structure in a Relatively Low Frequency Pulsatile Pipe Flow : Series B : Fluid Engineering, Heat Transfer, Combustion, Power, Thermophysical Properties
- Flow Pattern and Frictional Losses in Pulsating Pipe Flow : Part 6 Frictional Losses In a Laminar Flow
- Loss Coefficients for Flows Through a Sudden Expansion and a Sudden Contraction Closely Placed : Series B : Fluid Engineering, Heat Transfer, Combustion, Power, Thermophysical Properties
- Experimental Study of Turbulence in a Pulsatile Pipe Flow
- Transition to Turbulence and Velocity Distribution in an Oscillating Pipe Flow
- Flow Pattern and Frictional Losses in Pulsating Pipe Flow : Part 4, General Representation of Turbulent Frictional Losses
- Gaseous Reduction Behavior of Powdered Iron Ore Sinter and Analysis on the Basis of Rist Model for Fixed Bed
- Rate Enhancement of the Degassing Reaction by the Enlargement of RH and DH Reactors
- Oxidation Behavior of Silicon and Carbon in Molten Iro-Carbon-Silicon Alloys with Carbon Dioxide
- Oxidation Behavior of Silicon and Carbon in Molten Iron-Carbon-Silicon Alloys with Carbon Dioxide
- Nitrogen Dissociation Rate at Solid Surface of Ferrous Alloys
- Pressure and Velocity Distributions in Pulsating Turbulent Pipe Flow Part 2 Experimental Investigations
- Influence of Chlorine Forms and Dechlorination on Dioxins Formation/Suppression in the Combustion Processes (日韓資源リサイクル・材料化学に関する国際シンポジウム特集号)
- Fundamental Experiments on the H_2 Gas Injection into the Lower Part of a Blast Furnace Shaft
- Enhancement of Evaporation Removal Rate of Copper in Molten Iron by the Silicon and/or Carbon Addition
- Numerical Analysis of Transient Turbulent Flow in a Liquid Line
- Numerical Analysis of a Periodically Varying Flow in a Circular Tube Containing a Slightly Compressible Fluid
- Numerical Analysis of Pressure and Velocity Distributions for a Pulsating Turbulent Flow in a Circular Tube Containing a Slightly Compressible Fluid
- Effect of Water-Gas Shift Reaction on Reduction of Iron Oxide Powder Packed Bed with H_2-CO Mixtures
- Effect of Surface Concentration of Alloying Elements on Nitrogen Dissolution Rate in Molten Iron Alloys
- Effect of Slag Components on Reducibility and Melt Formation of Iron Ore Sinter
- Pressure and Velocity Distributions in Pulsating Turbulent Pipe Flow Part 1 Theoretical Treatments
- Effects of Slag Content and Composition on the Reducibility of Iron Oxide Including CaO-SiO_2-Fe_tO Slag
- Effects of Compressive Stress on Corrosion-Protective Quality and Its Maintenance under a Corrosive Environment for TiN Films Deposited by Reactive HCD Ion Plating
- Summarized Achievements of the Porous Meso-mosaic Texture Sinter Research Project
- Effects of Mn, Cu and Mo on the Rate of Nitrogen Dissolution in Molten Iron
- Influence of Channeling Factor on Liquid Hold-ups in an Initially Unsoaked Bed
- Re-examination of method of kinetic analysis on the rate of stepwise reduction of a single sinter particle with CO-CO2-N2 gas mixture.
- An Equation for Vapor Pressure and Its Application to Molten Salts.
- Influence of Slow Descent of Solid upon the Fluids Flow Behavior in Packed Beds Irrigated by a Liquid Counter-current to an Uprising Gas Stream.