Background modeling using special type of Markov Chain
スポンサーリンク
概要
- 論文の詳細を見る
Background modeling is important in video surveillance for extracting foreground regions from a complex environment. In this paper, we present a novel background modeling technique based on a special type of Markov Chain. The method is a substantial extension to the existing background subtraction techniques. First, a background pixel is statistically modeled by a linear regressive Gamma Markov distribution. Then, these statistical estimates are used as important parameters in background update schemes. The experimental results show that the proposed model is less sensitive to movements of the texture background and more robust for real time segmenting the foreground object accurately.
著者
-
Zin Thi
Graduate School Of Engineering Osaka City University
-
Hama Hiromitsu
Research Center for Industry Innovation, Osaka City University
-
Tin Pyke
Graduate School of Engineering, Osaka City University
-
Toriu Takashi
Graduate School of Engineering, Osaka City University
関連論文
- 画像ベース・ナビゲーションのための変動に強いサインボード認識
- モフォロジー演算と相対色によるセグメンテイションを用いたロバストな交通標識の認識
- Background modeling using special type of Markov Chain
- Robust Signboard Recognition for Vision-based Navigation