Application of nanotechnology for the prevention of neointimal formation after balloon injury in rats.:Application of nanotechnology for the prevention of neointimal formation after balloon injury in rats
スポンサーリンク
概要
- 論文の詳細を見る
Restenosis after coronary intervention still remains a serious problem in clinical cardiology. Recent advances in nanotechnology have enabled us to selectively deliver an antiproliferative drug to the balloon-injured artery. Here we report our results with NK911 that is a doxorubicin containing nanocapsule and is characterized to selectively accumulate in vascular lesions with increased permeability. We first confirmed by Evans-blue staining that in the rat carotid artery, vascular permeability was markedly increased at least for one week after balloon injury. We then examined the inhibitory effect of NK911 on the restenotic changes 4 weeks after the injury either in the normal artery (single injury protocol) and in the arteriosclerotic artery that had been induced by a previous balloon injury (double injury protocol). NK911 was intravenously administered only three times (immediately after, and 3 and 6 days after the injury) at three different doses (0.1, 1.0 and 10 mg/kg). Corresponding doses of doxooruhicin alone (0.016, 0.16, 1.6 mg/kg) were also administered in the same manner. In both protocols. NK911 dose-dependently suppressed neointimal formation (P<0.001, n=6 each). Immunohistochemical examination demonstrated that the inhibitory effect of NK911 was mainly due to suppression of vascular smooth muscle proliferation. Measurement of vascular concentrations of doxorubicin demonstrated that NK911 effectively delivered the drug to the balloon-injured carotid arteries. Finally, NK911 was well tolerated without any systemic adverse effects. Thus, the treatment with nanocapsules containing antiproliferative agents may be a novel and promising strategy for the prevention of restenosis after balloon angioplasty.
- 日本DDS学会の論文
日本DDS学会 | 論文
- 固形腫瘍における分子標的薬の現状と課題 : 腎がんの経験から
- 前立腺がんにおけるホルモン療法
- ホルモン製剤のDDSの基礎と臨床 : 特集によせて
- SN-38内包高分子ミセルNK012日米独立 phase I 試験
- 多機能性エンベロープ型ナノ構造体による人工遺伝子デリバリーシステムの創製 : 第7回日本DDS学会永井賞受賞によせて