Numerical Investigations of Variable Preconditioned GCR with Mixed Precision on GPU
スポンサーリンク
概要
- 論文の詳細を見る
The Variable Preconditioned GCR (VPGCR) with mixed precision on Graphics Processing Unit (GPU) using CUDA is numerically investigated. The convergence theorem of VPGCR is guaranteed that the residual equation can be solved in the range of single precision, which means that VPGCR is applicable method to elicit the high performance of GPU. The results of computations show that VPGCR with mixed precision demonstrated significant achievement than that with double precision operation. Especially, the hybrid VPGCR on GPU is 10.10 times faster than that of CPU, and the standard VPGCR on GPU is 10.36 times faster than that of CPU.
著者
-
FUJITA Norihisa
Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
-
FUJITA Norihisa
Tokyo University of Technology, Katakura 1404-1, Hachioji, Tokyo 192-0982, Japan
-
IKUNO Soichiro
Tokyo University of Technology, Katakura 1404-1, Hachioji, Tokyo 192-0982, Japan
-
DEKI Shuntaro
Tokyo University of Technology, Katakura 1404-1, Hachioji, Tokyo 192-0982, Japan
-
IKUNO Soichiro
Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
関連論文
- Numerical Investigations of Variable Preconditioned GCR with Mixed Precision on GPU
- High Performance Iterative Solver for Linear System using Multi GPU