Computational Fluid Dynamics Study of Liquid Droplet Impingement Erosion in the Inner Wall of a Bent Pipe
スポンサーリンク
概要
- 論文の詳細を見る
The bent pipe wall thinning phenomenon has been often found at the elbow of pipelines in the power engineering industry. Liquid droplet impingement (LDI) erosion could be regarded to be one of the major causes of unexpected troubles occasionally occurred in the inner bent pipe surface. In this paper, three-dimensional numerical simulations are conducted for a bent pipe. Typically the pipe diameter is 170mm and the bending angle is 90 degree, the mass flow rate of droplet is 4.5×10-3 kg/s with the velocity of 280m/s at the entry. The calculations employ a two-phase flow model. A computational fluid dynamic tool has been adopted by using one-way and two-way fluid-droplet coupled system in high Reynolds number regions. This computational fluid model is built up by incompressible Reynolds averaged Navier-Stokes equations using different turbulent flow computational models and the SIMPLE algorithm, and the numerical droplet model adopts the Lagrangian approach. The momentum transfers between droplet and carrier fluid are calculated by using two different fluid-droplet coupled methods. The interactional force between carrier and droplet are taken into account by momentum transfer in Eulerian-Lagrangian approaches. Based on the carrier streamlines and droplet trajectories, the two-way calculation using the interactional momentum transfer calculations could be a more appropriate model to simulate the bent pipe wall thinning phenomena, the effects of droplet size are also demonstrated numerically. Finally, it is shown that turbulence models are not sensitive to the involved droplets.
著者
-
NINOKATA Hisashi
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology
-
Ninokata Hisashi
Research Lab. For Nuclear Reactors Tokyo Institute Of Technology
-
Li Rui
Research And Development Center Sumitomo Heavy Industries Ltd.
-
YAMAGUCHI Akinori
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology
関連論文
- Study of the Self-Controllability for the Fast Reactor Core with High-Thermal-Conductivity Fuel
- Numerical Studies on Dynamic Behavior of Air-Water Cross Flow Between Two Circular Interconnected Channels
- Study of the Self-Controllability for the Fast Reactor Core with High-Thermal-Conductivity Fuel
- Computational Fluid Dynamics Study of Liquid Droplet Impingement Erosion in the Inner Wall of a Bent Pipe
- PRA-Based SMA : the First Tool toward a Risk-Informed Approach to the Seismic Design of the IRIS
- Prediction of Release Rate of Burnt Sodium as Aerosol
- Analysis of an Out-of-pile Experiment for Materials Redistribution under Core Disruptive Accident Condition of Fast Breeder Reactors
- Prediction of the Equilibrium Two-Phase Flow Distributions in Inter-Connected Subchannel Systems
- New Magnetic Regenerator Materials with Broad Peaks of Magnetic Specific Heat
- Concept of Erbium Doped Uranium Oxide Fuel Cycle in Light Water Reactors
- Second International Symposium on Global Environment and Nuclear Energy Systems
- Numerical Method for Simulation of Fluid Flow and Heat Transfer in Geometrically Disturbed Rod Bundles
- Numerical Study on Observed Decay Ratio of Coupled Neutronic-Thermal Hydraulic Instability in Ringhals Unit 1 under Random Noise Excitation
- An Algorithm for Attenuation of Turbulence in Particulate Flow Linked to the Fluid-dynamic Code COMMIX-M
- Development of Parallel Coupling System between Three-Dimensional Nodal Kinetic Code ENTREE and Two-Fluid Plant Simulator TRAC/BF1
- The Multi-Fluid Multi-Phase Subchannel Analysis Code KAMUI for Subassembly Accident Analysis of an LMFR
- Nonlinear Iterative Nodal Method Applied to Neutron Flux Modal Analysis