DNS Investigation on Autoignition and Flame Propagation in HCCI Combustion
スポンサーリンク
概要
- 論文の詳細を見る
2-dimensional direct numerical simulation (DNS) of autoignition and flame propagation of turbulent premixed mixture has been conducted to investigate the turbulent combustion mechanism in homogeneous charge compression ignition (HCCI) engines. CH4-air mixtures with spatial inhomogeneity of temperature and equivalence ratio are investigated by considering a detailed kinetic mechanism. Since the combustion process depends on local characteristics of the mixture, an identification method of ignition or flame propagation is proposed based on behaviors of elementary reactions related to OH radical. The proposed identification method shows that the area fraction of the flame propagation region increases drastically with the increase of initial temperature fluctuations.
著者
-
Miyauchi Toshio
Department Of Mechanical And Aerospace Engineering Tokyo Institute Of Technology
-
Tanahashi Mamoru
Department Of Mechanical And Aerospace Engineering Tokyo Institute Of Technology
-
FUKUSHIMA Naoya
Department of Mechanical and Aerospace Engineering, Tokyo Institute of Technology
-
FUKUMOTO Hiroaki
Department of Mechano-Aerospace Engineering, Tokyo Institute of Technology
-
SEO Takehiko
Department of Mechanical Engineering, Yamaguchi University
-
SHIMURA Masayasu
Department of Mechanical and Aerospace Engineering, Tokyo Institute of Technology
-
SEO Takehiko
Department of Mechanical and Aerospace Engineering, Tokyo Institute of Technology
関連論文
- Development of a Pellet Catalytic Combustor for a Small Scale Generation System Using Near Infrared Ray Irradiation
- DNS Investigation on Autoignition and Flame Propagation in HCCI Combustion
- (乱流の数値シミュレーション(NST))
- Inflow and Outflow Boundary Conditions for Direct Numerical Simulations
- F205 PARTICLE DISPERSION AND COHERENT FINE SCALE EDDIES IN HOMOGENEOUS ISOTROPIC TURBULENCE(DNS and computational procedure for turbulence)
- Direct Numerical Simulation of Chemically Reacting Mixing Layers
- TED-AJ03-328 LOCAL FLAME STRUCTURE OF H_2-AIR PREMIXED FLAMES PROPAGATING IN ROTATING TURBULENCE
- Large Eddy Simulation of Homogeneous Isotropic Turbulent Flow Using the Finite Element Method
- TED-AJ03-374 ESTIMATIONS OF THE HEAT RELEASE RATE IN METHANE-AIR PREMIXED FLAMES BY CH-PLIF
- B305 LOCAL FLAME STRUCTURE IN METHANE-AIR TURBULENT PREMIXED FLAMES(Turbulent flame-1)
- Verification of Reduced Kinetic Mechanism by Hydrogen-air Non-premixed Flame Formed in Shear Layer
- Sound Generation in Compressible Mixing Layers
- Assessment of Subgrid-Scale Models by Direct Numerical Simulation of a Temporally Developing Turbulent Mixing Layer
- Verification of SGS-Stress Models by Direct Numerical Simulation of Compressible Homogeneous Isotropic Turbulence
- Evaluation of Energy Transfer between Grid Scale and Subgrid Scale by Use of Direct Numerical Simulation Data Base
- Heat Transfer and Friction Characteristics in Turbulent Rhombic Duct Flows
- An Experimental Study on Combustion Dynamics and NOx Emission of a Swirl Stabilized Combustor with Secondary Fuel Injection
- OS-C2: DNS Approaches for Investigation of Turbulent Combustion in PCCI and HCCI Engines(OS-C The Role of Heterogeneity of mixture on HCCI and PCCI Combustion,Organized Session Papers)
- Large-Scale Vortical Motion and Pressure Fluctuation in Noise-Controlled, Swirl-Stabilized Combustor
- Numerical Study of Heat Transfer Mechanism in Turbulent Supercritical CO2 Channel Flow
- Current State and Perspective of Turbulent Combustion Research