Speech Recognition under Multiple Noise Environment Based on Multi-Mixture HMM and Weight Optimization by the Aspect Model
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we propose an acoustic model that is robust to multiple noise environments, as well as a method for adapting the acoustic model to an environment to improve the model. The model is called “the multi-mixture model, ” which is based on a mixture of different HMMs each of which is trained using speech under different noise conditions. Speech recognition experiments showed that the proposed model performs better than the conventional multi-condition model. The method for adaptation is based on the aspect model, which is a “mixture-of-mixture” model. To realize adaptation using extremely small amount of adaptation data (i.e., a few seconds), we train a small number of mixture models, which can be interpreted as models for “clusters” of noise environments. Then, the models are mixed using weights, which are determined according to the adaptation data. The experimental results showed that the adaptation based on the aspect model improved the word accuracy in a heavy noise environment and showed no performance deterioration for all noise conditions, while the conventional methods either did not improve the performance or showed both improvement and degradation of recognition performance according to noise conditions.
論文 | ランダム
- 金屬材料の疲勞と内部摩擦に關する研究(第4報) : 鑄鐵,超ジュラルミンの疲機構について
- 縱方向に大なる殘留歪を有する材料の捩りに關する實驗
- ピエゾ効果に有する異方性連続体における転位の動力学
- だ円柱まわりの低速流れ : 第2報,慣性効果
- だ円柱まわりの低速流れ : 第1報,ストークス解の特異性