A Unified Computational Approach to the Optimization of Surface Textures:One Dimensional Hydrodynamic Bearings
スポンサーリンク
概要
- 論文の詳細を見る
In tribological applications, surface textures are used to increase load capacity and reduce friction losses in hydrodynamic lubricated contacts. However, there is no systematic, efficient and general approach allowing for the optimization of surface texture shapes to give an optimal performance. The work conducted is, in most cases, by "trial and error", i.e. changes are introduced and their effects studied. This is time consuming and inefficient. In this paper, a unified computational approach to the optimization of texture shapes in bearings is proposed. The approach aims at finding the optimal texture shape that supports the maximum load and/or minimizes friction losses in one dimensional hydrodynamic bearings. The texture shape optimization problem is transformed into a nonlinearly constrained mathematical programming problem with general constraints that can be solved using optimal control software. Load-carrying capacity or friction force of a bearing becomes an objective functional that is maximized or minimized, subject to: (i) any Reynolds equations given by first order ordinary differential equations, (ii) pressure boundary conditions and (iii) functions/parameters that define the surface texture shape. This newly developed approach is demonstrated on examples of parallel textured hydrodynamic bearings. The effects of non-Newtonian fluids, cavitation and viscosity varying with temperature are considered.
- 社団法人 日本トライボロジー学会の論文
社団法人 日本トライボロジー学会 | 論文
- Influences of Film Deposition Condition on Friction of Diamond-Like Carbon Film: A Theoretical Investigation
- A Theoretical Study of Dynamic Behavior of Diphenyldisulphide Molecule on Fe Surface: Novel Ultra-Accelerated Quantum Chemical Molecular Dynamics Approach
- Friction and Wear Properties of Copper/Carbon/RB Ceramics Composite under Electrical Current
- Friction and Wear Properties of Copper/Carbon/RB Ceramics Composite Materials under Dry Condition
- Development of Acoustic Emission Viscosity Model for Measuring Engine Oil Viscosity Relationship with Engine Oil In-Service Age