Development of a Suppression Method for Deposition of Radioactive Cobalt after Chemical Decontamination: (I) Effect of the Ferrite Film Coating on Suppression of Cobalt Deposition
スポンサーリンク
概要
- 論文の詳細を見る
In the last decade, chemical decontamination at the beginning of periodical inspection has been applied to many Japanese BWR plants in order to reduce radiation exposure. However, following the chemical decontamination, a rapid dose rate increase can be seen in some plants after just a few operation cycles. Oxide film, which easily incorporates radioactivity, might be formed after the chemical decontamination. We developed a new way to reduce the recontamination after the chemical decontamination to maintain long-term continued decontamination effects without any chemical injections or chemical controls in reactor water during operation. In our approach, a fine ferrite film is formed by the Hitachi Ferrite Coat process after oxide films formed during the plant operation are removed by the chemical decontamination process. We select Fe(HCOO)2 aqueous solution, H2O2, and N2H4 as the treatment chemicals for fine ferrite film formation for suitable BWR plant application. Our laboratory experiment results confirm a 60Co deposition reduction effect of 1/5 compared with that of nontreatment for up to 3,100 hours. The fine ferrite film that was formed on the specimen before the 60Co deposition test remains as a film structure after the test. The corrosion amount of the specimen is suppressed to 1/4 through the effect of the fine ferrite film.
著者
-
Hosokawa Hideyuki
Energy and Environmental Systems Laboratory, Hitachi Ltd.
-
Nagase Makoto
Hitachi Works, Hitachi-GE Nuclear Energy, Ltd.
-
Fuse Motomasa
Hitachi Works, Hitachi-GE Nuclear Energy, Ltd.
関連論文
- Development of a Suppression Method for Deposition of Radioactive Cobalt after Chemical Decontamination: (I) Effect of the Ferrite Film Coating on Suppression of Cobalt Deposition
- Effects of Flow Rate on Dissolution of Monocrystal Alumina and Monocrystal Yttria-Stabilized Zirconia in High-Temperature Pure Water
- Development of a Suppression Method for Deposition of Radioactive Cobalt after Chemical Decontamination : (I) Effect of the Ferrite Film Coating on Suppression of Cobalt Deposition
- Development of a Suppression Method for Deposition of Radioactive Cobalt after Chemical Decontamination : (II) Consideration of Fe_3O_4 Plating Mechanism on Stainless Steel in Aqueous Solution at 363K
- Development of a Suppression Method for Corrosion of Carbon Steel by Double-Layer Ni Metal-Ni Ferrite Film
- Study of Polarization Curve Measurement Method for Type 304 Stainless Steel in BWR High Temperature-High Purity Water
- Hydrogen and Hydrazine Co-injection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors, (VI) The Effect of Ammonia on Intergranular Stress Corrosion Cracking
- Hydrazine and Hydrogen Coinjection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors (VII) : Effects of Bulk Water Chemistry on ECP Distribution inside a Crack
- Hydrazine and Hydrogen Co-injection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors (IV) : Reaction Mechanism and Plant Feasibility Analysis
- Hydrazine and Hydrogen Co-injection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors (V) Effects of Hydrazine and Dissolved Oxygen on Flow Accelerated Corrosion of Carbon Steel
- Hydrazine and Hydrogen Co-injection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors, (III) Effects of Adding Hydrazine on Zircaloy-2 Corrosion
- Hydrazine and Hydrogen Co-injection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors, (II) : Reactivity of Hydrazine with Oxidant in High Temperature Water under Gamma-irradiation
- Effects of Noble Metal Deposition upon Corrosion Behavior of Structural Materials in Nuclear Power Plants, (I) : Effect of Noble Metal Deposition with an Oxide Film on Type 304 Stainless Steel under Simulated Hydrogen Water Chemistry Condition
- Development of a Suppression Method for Corrosion of Carbon Steel by Double-Layer Ni Metal-Ni Ferrite Film
- Hydrazine and Hydrogen Co-injection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors, (I) : Temperature Dependence of Hydrazine Reactions
- Hydrazine and Hydrogen Coinjection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors (VII) : Effects of Bulk Water Chemistry on ECP Distribution inside a Crack