Numerical Simulation of Copper Precipitation during Aging in Deformed Fe-Cu Alloys
スポンサーリンク
概要
- 論文の詳細を見る
A numerical model was developed to simulate the competing precipitation of Cu particles on dislocations and in the matrix in Fe-Cu alloys. The nucleation and growth rates and the remaining Cu concentration in the matrix were calculated successively at a large number of fine discrete time steps. In the absence of dislocations the results for precipitation in the matrix that was assumed to occur homogeneously were in essential agreement with those of Langer-Schwartz (L-S) model and Lifshitz-Slyozov-Wagner (LSW) coarsening theory. The heterogeneous precipitation on dislocations was incorporated taking into account the development of solute-depleted zone around dislocations. The coarsening behavior of particles on dislocations and in the matrix deviated substantially from those of previous theories probably due to the interaction of diffusion fields between heterogeneous and homogeneous precipitation zones. In other words, coarsening can occur at the expense of smaller particles nucleated in the matrix at later stages. The bcc to fcc transformation of Cu particles that occurs during growth was likely to accelerate the coarsening of Cu particles. The simulation results agreed well with experiment in respect of the particle number and mean particle radius, but the model yielded a considerably narrower particle size distribution than experiment reported in the literature.
- The Iron and Steel Institute of Japanの論文
著者
-
Enomoto Masato
Department Of Materials Science And Engineering Ibaraki University
-
YANG Jinbo
Department of Materials Science and Engineering, Ibaraki University
関連論文
- A Linear Muffin-Tin Orbital Calculation of Local Electronic and Magnetic Properties of YFe_Mo_2 and YFe_10Mo_2N
- Influence of Magnetic Fields on α/γ Equilibrium in Fe-C(-X) Alloys
- Lengthening Kinetics of Bainitic Plates in Iron-Nickel-Carbon Alloys
- Interlamellar Spacing of Pearlite in a Near-eutectoid Fe-C Alloy Measured by Serial Sectioning
- Estimation of Number of Precipitate Particles per Unit Volume from Measurements on Polished Specimen Surfaces-Computer Simulation
- Ferrite Nucleation at Ceramic/Austenite Interfaces
- Modeling Thermal Desorption Analysis of Hydrogen in Steel
- Enhanced Phenomena in Metals with Electric and Magnetic Fields : II Magnetic Fields
- Modeling Pearlite Transformation in Super-high Strength Wire Rods : II. Simulation in Fe-C Base Multi-component Alloys
- Modeling Pearlite Transformation in Super-high Strength Wire Rods : I. Modeling and Simulation in Fe-C-X Ternary Alloys
- Further Assessment of the Kissinger Formula in Simulation of Thermal Desorption Spectrum of Hydrogen
- Influence of Carbon Segregation to Dislocations on Thermal Desorption Spectrum of Hydrogen in Medium Carbon Martensitic Steels
- Numerical Simulation of Copper Precipitation during Aging in Deformed Fe-Cu Alloys
- Further Assessment of the Kissinger Formula in Simulation of Thermal Desorption Spectrum of Hydrogen
- Influence of Carbon Segregation to Dislocations on Thermal Desorption Spectrum of Hydrogen in Medium Carbon Martensitic Steels