A Simplified Approach in the Study of Elliptic Differential Equations in UMD Spaces and New Applications
スポンサーリンク
概要
- 論文の詳細を見る
This paper is devoted to provide some new clarifications in the study of complete abstract second order differential equations of elliptic type given in our recent papers [8], [9] and [10]. We improve the situation in the case of the space Lp(0,1;X) with a UMD Banach space X by considering an approach generalizing those used in [10]. On the other hand, we give some new examples to which our theory applies.
- 日本数学会函数方程式論分科会の論文
著者
-
Favini Angelo
Universita Bologna
-
Yagi Atsushi
Osaka University
-
Labbas Rabah
Université du Havre
-
Maingot Stéphane
Université du Havre
関連論文
- Wellposedness and regularity of second order abstract equations arising in hyperbolic-like problems with nonlinear boundary conditions
- Space and time regularity for degenerate evolution equations
- A Forest Model with Memory
- Global Stability of Approximation for Exponential Attractors
- Complete Abstract Differential Equations of Elliptic Type in UMD Spaces
- On the Solvability and the Maximal Regularity of Complete Abstract Differential Equations of Elliptic Type
- Asymptotic Behavior of Solutions for Forest Kinematic Model
- A Simplified Approach in the Study of Elliptic Differential Equations in UMD Spaces and New Applications
- On the Solvability of Complete Abstract Differential Equations of Elliptic Type