Numerical Inclusion of Optimum Point for Linear Programming
スポンサーリンク
概要
- 論文の詳細を見る
This paper concerns with the following linear programming problem: \[ \mbox{Maximize } c^tx, \mbox{ subject to } Ax \leqq b \mbox{ and } x\geqq 0, \] where $A \in \F^{m\times n}$, $b \in \F^m$ and $c, x \in \F^n$. Here, $\F$ is a set of floating point numbers. The aim of this paper is to propose a numerical method of including an optimum point of this linear programming problem provided that a good approximation of an optimum point is given. The proposed method is base on Kantorovichs theorem and the continuous Newton method. Kantorovichs theorem is used for proving the existence of a solution for complimentarity equation and the continuous Newton method is used to prove feasibility of that solution. Numerical examples show that a computational cost to include optimum point is about 4 times than that for getting an approximate optimum solution.
論文 | ランダム
- Exposure to Benzene among Workers in a Petroleum Transport Company
- レオナルド・ダ・ヴィンチの自然観察と芸術 :「水」のモチーフに見る独自性について
- ゴルドーニ『避暑三部作』にみられる18世紀のヴェネツィア社会 : 『ペルシャの花嫁三部作』との比較を通して
- Endoscopic Sphincterotomy and Recurrence of Acute Pancreatitis in Gallstone Patients Considered Unfit for Surgery
- '95マキャヴェリ国際会議報告とマキャヴェリの政治思想の前提について