Critical points of the symmetric functions of the eigenvalues of the Laplace operator and overdetermined problems
スポンサーリンク
概要
- 論文の詳細を見る
We consider the Dirichlet and the Neumann eigenvalue problem for the Laplace operator on a variable nonsmooth domain, and we prove that the elementary symmetric functions of the eigenvalues splitting from a given eigenvalue upon domain deformation have a critical point at a domain with the shape of a ball. Correspondingly, we formulate overdetermined boundary value problems of the type of the Schiffer conjecture.
- 社団法人 日本数学会の論文
- 2006-01-01
著者
-
Lanza De
Dipartimento Di Matematica Pura Ed Applicata Universita Di Padova
-
LAMBERTI Pier
Dipartimento di Matematica Pura ed Applicata Universita di Padova
関連論文
- Critical points of the symmetric functions of the eigenvalues of the Laplace operator and overdetermined problems
- Differentiability properties of some nonlinear operators associated to the conformal welding of Jordan curves in Schauder spaces