Breeding Capability and Void Reactivity Analysis of Heavy-Water-Cooled Thorium Reactor
スポンサーリンク
概要
- 論文の詳細を見る
The fuel breeding and void reactivity coefficient of thorium reactors have been investigated using heavy water as coolant for several parametric surveys on moderator-to-fuel ratio (MFR) and burnup. The equilibrium fuel cycle burnup calculation has been performed, which is coupled with the cell calculation for this evaluation. The η of 233U shows its superiority over other fissile nuclides in the surveyed MFR ranges and always stays higher than 2.1, which indicates that the reactor has a breeding condition for a wide range of MFR. A breeding condition with a burnup comparable to that of a standard PWR or higher can be achieved by adopting a larger pin gap (1–6 mm), and a pin gap of about 2 mm can be used to achieve a breeding ratio (BR) of 1.1. A feasible design region of the reactors, which fulfills the breeding condition and negative void reactivity coefficient, has been found. A heavy-water-cooled PWR-type Th-233U fuel reactor can be designed as a breeder reactor with negative void coefficient.
著者
-
Permana Sidik
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology
-
Takaki Naoyuki
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology
-
Sekimoto Hiroshi
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology
-
Sekimoto Hiroshi
Research Laboratory For Nuclear Reactors Tokyo Institute Of Technology
関連論文
- Breeding Capability and Void Reactivity Analysis of Heavy-Water-Cooled Thorium Reactor
- ICONE11-36126 Examination of applicability of IK method in the negative reactivity measurements
- ICONE11-36061 APPLICATION OF CANDLE BURNUP TO BLOCK-TYPE HIGH TEMPERATURE GAS COOLED REACTOR
- A New Estimation Method for Nuclide Number Densities in Equilibrium Cycle
- Radioactive Waste Transmutation and Safety Potentials of the Lead Cooled Fast Reactor in the Equilibrium State
- Comparison of the Burnup Characteristics and Radiotoxicity Hazards of Rock-like Oxide Fuel with Different Types of Additives
- Application of Monte Carlo Method to Solve the Neutron Kinetics Equation for a Subcritical Assembly
- Measurement of keV-Neutron Capture Cross Sections and Capture Gamma-Ray Spectra of ^Bi
- Feasible Region of Design Parameters for Water Cooled Thorium Breeder Reactor
- Effects of Fuel and Coolant Temperatures and Neutron Fluence on CANDLE Burnup Calculation
- Sensitivities of Some Characteristics of Nuclear Equilibrium State to One-Group Constants
- Transport Equivalent Diffusion Constants for Reflector Region in PWRs
- ICONE11-36045 Removal of Polonium Contamination by Lead-Bismuth Eutectic in Nuclear Systems
- Calculational Method of One-Group Nuclear Constants in Nuclear Equilibrium State
- Design Concept of Fast Spectrum Pulse Reactor with Packed Core of Coated Dilute Fuel Particles
- Exact Error Estimation for Solutions of Nuclide Chain Equations
- Characteristics of Several Equilibrium Fuel Cycles of PWR
- Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations
- Fast neutron spectrum in lithium fluoride pile with D-T neutron source.
- New method to analyze equilibrium cycle of pebble-bed reactors.
- Scalar fast neutron spectra in graphite-reflected lithium fluoride pile with D-T neutron source.
- Burn-off and Production of CO and CO2 in the Oxidation of Nuclear Reactor-Grade Graphites in a Flow System.
- Fast neutron spectrum generated in graphite pile with D-T neutron source.