Friction Properties of the DLC Film with Periodic Structures in Nano-scale
スポンサーリンク
概要
- 論文の詳細を見る
Reduction of friction at very low normal loads and for very small contact areas is important for the development of micro devices. High performance hard coatings such as diamond-like carbon (DLC) films and improved surfaces with nanostructures are being investigated with respect to their friction reduction properties. Previously, difficulties associated with the production of nano-scale periodic structures in DLC films have prohibited the study of such films.In the present study, the friction properties of the DLC film with periodic structures were investigated at the nano-scale using an atomic force microscope (AFM). These periodic structures were generated on the surface of the DLC film by means of a femtosecond (fs) laser having the fluence near the ablation threshold. Friction tests were carried out under normal loads ranging from 20 nN to 130 nN, and the frictional directions were 0º, 45º and 90º (relative to the line along which the periodic structures were created). The lateral force of the DLC film with the periodic structures was lower than that of the film without the periodic structures. We have concluded that decreases in adhesive forces produce significant decreases in lateral forces for the same normal loads.
- 社団法人 日本トライボロジー学会の論文
社団法人 日本トライボロジー学会 | 論文
- Influences of Film Deposition Condition on Friction of Diamond-Like Carbon Film: A Theoretical Investigation
- A Theoretical Study of Dynamic Behavior of Diphenyldisulphide Molecule on Fe Surface: Novel Ultra-Accelerated Quantum Chemical Molecular Dynamics Approach
- Friction and Wear Properties of Copper/Carbon/RB Ceramics Composite under Electrical Current
- Friction and Wear Properties of Copper/Carbon/RB Ceramics Composite Materials under Dry Condition
- Development of Acoustic Emission Viscosity Model for Measuring Engine Oil Viscosity Relationship with Engine Oil In-Service Age