TWO-DIMENSIONAL VERSAL $ G $-COVERS AND CREMONA EMBEDDINGS OF FINITE GROUPS
スポンサーリンク
概要
- 論文の詳細を見る
Let $ G $ be a finite group. A Galois cover $ \bar{ \omega } \colon X \rightarrow Y $ with Galois group $ G $ is called a versal $ G $-cover if any $ G $-cover is induced from $ \bat{ \omega } \colon X \rightaroow Y $. In this paper, we prove that, if the essential dimension of $ G $ is equal to $ 2 $, then there exists a versal $ G $-cover $ \bar{ \omega } \colon X \rightarrow Y $ such that (i) $ X $ is a smooth rational surface, (ii) $ G $ is a finite automorphism group of $ X $, (iii) the action of $ G $ on $ X $ is minimal, and (iv) $ Y = X/G $. We also give some examples of finite groups which have non-conjugate embeddings into the Cremona group $ Cr_2(\mathbb{C}) $.
- Faculty of Mathematics, Kyushu Universityの論文
著者
-
Tokunaga Hiro-o
Department Of Mathematics And Information Sciences Tokyo Metropolitan University
-
Tokunaga Hiroo
Department of Mathematics and Information Sciences Tokyo Metropolitan University
関連論文
- Non-Galois triple covering of P^2 branched along quintic curves and their cubic equations
- TWO-DIMENSIONAL VERSAL $ G $-COVERS AND CREMONA EMBEDDINGS OF FINITE GROUPS