A VARIATION OF EULER'S APPROACH TO VALUES OF THE RIEMANN ZETA FUNCTION
スポンサーリンク
概要
著者
-
Kaneko Masanobu
Faculty Of Math Kyushu Univ.
-
Wakayama Masato
Faculty Of Mathematics Kyushu University
-
KUROKAWA Nobushige
Department of Mathematics Tokyo Institute of Technology
-
Wakayama Masato
Faculty of Mathematics, Kyushu University
関連論文
- 3P-274 多細胞の条件指標と最大多様性指標の関係式は、楕円曲線を含んでいる(生命の起源・進化,第46回日本生物物理学会年会)
- ULTRADISCRETIZATION OF A SOLVABLE TWO-DIMENSIONAL CHAOTIC MAP ASSOCIATED WITH THE HESSE CUBIC CURVE
- APERY-LIKE NUMBERS ARISING FROM SPECIAL VALUES OF SPECTRAL ZETA FUNCTIONS FOR NON-COMMUTATIVE HARMONIC OSCILLATORS
- PERIOD DEFORMATIONS AND RAABE'S FORMULAS FOR GENERALIZED GAMMA AND SINE FUNCTIONS
- Remarks on Shintani's zeta function
- Splitting density for lifting about discrete groups
- Regularizations and finite ladders in multiple trigonometry
- EXTREMAL VALUES OF DOUBLE AND TRIPLE TRIGONOMETRIC FUNCTIONS
- A VARIATION OF EULER'S APPROACH TO VALUES OF THE RIEMANN ZETA FUNCTION
- ZETA REGULARIZATIONS AND $q $-ANALOGUE OF RING SINE FUNCTIONS
- Zeros of Witten zeta functions and absolute limit
- Formal group laws for multiple sine functions and applications