Evaluating Information Retrieval Metrics Based on Bootstrap Hypothesis Tests
スポンサーリンク
概要
- 論文の詳細を見る
This paper describes how the bootstrap approach to statistics can be applied to the evaluation of IR effectiveness metrics. More specifically, we describe straightforward methods for comparing the discriminative power of IR metrics based on Bootstrap Hypothesis Tests. Unlike the somewhat ad hoc Swap Method proposed by Voorhees and Buckley, our Bootstrap Sensitivity Methods estimate the overall performance difference required to achieve a given confidence level directly from Bootstrap Hypothesis Test results. We demonstrate the usefulness of our methods using four different data sets (i.e., test collections and submitted runs) from the NTCIR CLIR track series for comparing seven IR metrics, including those that can handle graded relevance and those based on the Geometric Mean. We also show that the Bootstrap Sensitivity results are generally consistent with those based on the more ad hoc methods.
論文 | ランダム
- スピネル質耐火物のワイブル係数による評価 (〔耐火物技術協会〕近畿支部秋季研究発表会資料)
- 高温焼成塩基れんがに対するアルミナの効果について (〔耐火物技術協会〕近畿支部秋季講演研究発表会資料要約)
- 高利回り債券に関する10の疑問
- 4度目のアタックでつかんだ頂--日本勤労者山岳連盟 K2、ブロード・ピーク登山隊2000
- ヒマラヤ駈け登り記 3カ月に3カ国3山に登頂