Fabrication of anodic porous alumina via anodizing in cyclic oxocarbon acids
スポンサーリンク
概要
- 論文の詳細を見る
The growth behavior of anodic porous alumina formed by anodizing in novel electrolyte solutions, the cyclic oxocarbon acids croconic and rhodizonic acid, was investigated for the first time. High-purity aluminum specimens were anodized in 0.1 M croconic and rhodizonic acid solutions at various constant current densities. An anodic porous alumina film with a cell size of 200–450 nm grew uniformly on an aluminum substrate by rhodizonic acid anodizing at 5–40 A m−2, and a black, burned oxide was formed at higher current density. The cell size of the porous alumina increased with current density and corresponding anodizing voltage. Anodizing in croconic acid at 293 K caused the formation of thin anodic porous alumina films as well as black, thick burned oxides. The uniformity of the porous alumina improved by increasing the temperature of the croconic acid solution, and anodic porous alumina films with a uniform film thickness were successfully obtained. Our experimental results showed that the cyclic oxocarbon acids croconic and rhodizonic acid could be employed as a suitable electrolyte for the formation of anodic porous alumina films.
- Elsevierの論文
- 2014-09-15
Elsevier | 論文
- Design and operation of an air-conditioning system fueled by wood pellets
- A comparative study of Al and LiF:Al interfaces with poly (3-hexylthiophene) using bias dependent photoluminescence technique
- Evidence of photoluminescence quenching in poly(3-hexylthiophene-2,5-diyl) due to injected charge carriers
- Volume shrinkage dependence of ferromagnetic moment in lanthanide ferromagnets gadolinium, terbium, dysprosium, and holmium
- In vivo promoter analysis on refeeding response of hepatic sterol regulatory element-binding protein-1c expression