Reintroduction of H5N1 highly pathogenic avian influenza virus by migratory water birds, causing poultry outbreaks in the 2010-2011 winter season in Japan
スポンサーリンク
概要
- 論文の詳細を見る
H5N1 highly pathogenic avian influenza virus (HPAIV) was reintroduced and caused outbreaks in chickens in 2010-2011 winter season in Japan, which had been free from highly pathogenic avian influenza (HPAI) since 2007 when HPAI outbreaks occurred and were controlled. On October 14, 2010 at Lake Ohnuma, Wakkanai, the northernmost part of Hokkaido, Japan, H5N1 HPAIVs were isolated from fecal samples of ducks flying from their nesting lakes in Siberia. Since then, in Japan, H5N1 HPAIVs have been isolated from 63 wild birds in 17 prefectures and caused HPAI outbreaks in 24 chicken farms in 9 prefectures by the end of March in 2011. Each of these isolates was genetically closely related to the HPAIV isolates at Lake Ohnuma, and those in China, Mongolia, Russia, and Korea, belonging to genetic clade 2.3.2.1. In addition, these isolates were genetically classified into 3 groups, suggesting that the viruses were transmitted by migratory water birds through at least 3 different routes from their northern territory to Japan. These isolates were antigenic variants, which is consistent with selection in poultry under the immunological pressure induced by vaccination. To prevent the perpetuation of viruses in the lakes where water birds nest in summer in Siberia, prompt eradication of HPAIVs in poultry is urgently needed in Asian countries where HPAI has not been controlled.
- Society for General Microbiologyの論文
- 2012-03-00
Society for General Microbiology | 論文
- Detection and assignment of proteins encoded by rice black streaked dwarf fijivirus S7, S8, S9 and S10
- Rice ragged stunt Oryzavirus genome segment 9 encodes a 38 600 Mr structural protein
- Phylogenetic and virulence analysis of tick-borne encephalitis viruses from Japan and far-eastern Russia
- Hypothesis on particle structure and assembly of rice dwarf phytoreovirus: interactions among multiple structural proteins
- The central and C-terminal domains of VPg of Clover yellow vein virus are important for VPg–HCPro and VPg–VPg interactions