Fixed equilibria of point vortices in symmetric multiply connected domains
スポンサーリンク
概要
- 論文の詳細を見る
The paper provides with symmetric fixed configurations of point vortices in multiply connected domains in the unit circle with many circular obstacles. When the circular domain is invariant with respect to the rotation around the origin by the degree of 2π/M, a regular M-polygonal ring configuration of identical point vortices becomes a fixed equilibrium. On the other hand, when we assume a special symmetry, called the folding symmetry, on the circular domain, we find a fixed equilibrium in which M point vortices with the positive unit strength and M point vortices with the negative unit strength are arranged alternately at the vertices of a 2M-polygon. We also investigate the stability of these fixed equilibria and their bifurcation for a special circular domain with the rotational symmetry as well as the folding symmetry. Furthermore, we discuss fixed equilibria in non-circular multiply connected domains with the same symmetries. We give sufficient conditions for the conformal mappings, by which fixed equilibria in the circular domains are mapped to those in the general multiply connected domains. Some examples of such conformal mappings are also provided.
- 2012-03-01
論文 | ランダム
- 都市水害の構造と住民の防災意識--札幌市東区,北区の事例 (都市と災害) -- (都市と災害)
- ソフトエネルギーパスに基づく地域エネルギーの経済的・環境的評価
- 都市河川流域における土地利用高度化に関する研究--札幌市東北部小河川を事例として (昭和57年度 日本都市計画学会学術研究発表会論文集-17-)
- 洪水被害事前評価に関する研究
- ネットワーク分析によるトルコ、アンカラの都心住宅価格の推計に関する研究