Control of morphology and surface wettability of anodic niobium oxide microcones formed in hot phosphate-glycerol electrolytes
スポンサーリンク
概要
- 論文の詳細を見る
We report the fabrication of superhydrophobic surfaces with a hierarchical morphology by self-organized anodizing process. Simply by anodizing of niobium metal in hot phosphate-glycerol electrolyte, niobium oxide microcones, consisting of highly branched oxide nanofibers, develop on the surface. The size of the microcones and their tip angles are controlled by changing the applied potential difference in anodizing and the water content in the electrolyte. Reduction of the water content increases the size of the microcones, with the nanofibers changing to nanoparticles. The size of microcones is also reduced by increasing the applied potential difference, without influencing the tip angle. The hierarchical oxide surfaces are superhydrophilic, with static contact angles close to 0°. Coating of the anodic oxide films with a monolayer of fluoroalkyl phosphate makes the surfaces superhydrophobic with a contact angle for water as high as 175° and a very small contact angle hysteresis of only 2°. The present results indicate that the larger microcones with smaller tip angles show the higher contact angle for water.
- Elsevierの論文
- 2011-09-01
Elsevier | 論文
- Design and operation of an air-conditioning system fueled by wood pellets
- A comparative study of Al and LiF:Al interfaces with poly (3-hexylthiophene) using bias dependent photoluminescence technique
- Evidence of photoluminescence quenching in poly(3-hexylthiophene-2,5-diyl) due to injected charge carriers
- Volume shrinkage dependence of ferromagnetic moment in lanthanide ferromagnets gadolinium, terbium, dysprosium, and holmium
- In vivo promoter analysis on refeeding response of hepatic sterol regulatory element-binding protein-1c expression