Determination of trace amounts of sodium and lithium in zirconium dioxide (ZrO_2) using liquid electrode plasma optical emission spectrometry
スポンサーリンク
概要
- 論文の詳細を見る
This paper describes a quantitative measurement of trace elements (Na, Li) in high purity zirconium dioxide powder using liquid electrode plasma optical emission spectrometry (LEP-OES). Conventionally, for such type of measurements, inductively coupled plasma optical emission spectrometry (ICP-OES) is frequently employed. The detection limits of elements in zirconium by ICP-OES are degraded due to the spectra interference between the trace elements and zirconium of the matrix, because zirconium is a line rich element in spectra obtained by ICP-OES. LEP-OES is an elemental analysis method developed by the authors. The measurement principle is simple, as follows. Sample solution is put into a narrow channel on a small cuvette and voltage pulse is applied from both ends of the channel. At the center of the channel which is made narrower, the voltage and current are concentrated there, and plasma is generated. From the emission of the plasma, the quantitative analysis of the elements in the solution is achieved. The LEP-OES has the property that the emission of zirconium is relatively weak, so that highly sensitive measurement of trace elements in zirconium matrix can be conducted without interference. Sample solution is prepared by dissolving high purity zirconium dioxide powder and trace amounts of Na or Li with sulfuric acid. The voltage dependence and the pulse width dependence of optical emission spectra are also investigated. With increase of the voltage or the pulse width, the ratio of emission intensities of Na to those of hydrogen increases. This suggests that the ratio of sensitivity of two elements is variable, that means the element selectivity is controllable to some extent by the measurement conditions in LEP-OES. In the case of Na and H, the ratio can be controlled from 7.4 to 21.6%. Finally, the detection limits (3 S.D.) of the trace elements, Na and Li, in 4000 μg g^<−1> zirconium dioxide aqueous solution are found to be 0.02 and 0.133 μg g^<−1>, respectively. These values correspond to 5 μg g^<−1) for Na, 33.25 μg g^<−1> for Li in original high purity zirconium dioxide powder. The correlation coefficient of calibration curve was 0.995 for Na, 0.985 for Li. Those are comparable to the literature values of detection limits using ICP-OES.
- Elsevierの論文
- 2009-02-23
著者
関連論文
- Determination of trace amounts of sodium and lithium in zirconium dioxide (ZrO_2) using liquid electrode plasma optical emission spectrometry
- Microfluidic Amperometric Biochips Based on Carbon Nanotube Arrayed Electrodes
- DNA Aptamer-Based Biosensing of Immunoglobulin E Using Carbon Nanotube Field-Effect Transistors
- High-Sensitive and Label-Free Detection of Biomolecules Using Single-Walled Carbon Nanotube Modified Microelectrodes
- 1B16-5 Label-free electrochemical biosensor based on carbon nanotubes
- Direct Ultrasensitive DNA Sensors Based on Carbon Nanotube Field-Effect Transistors
- Ultrasensitive Detection of DNA Hybridization Using Carbon Nanotube Field-Effect Transistors
- Investigating Neuronal Activity with Planar Microelectrode Arrays : Achievements and New Perspectives
- Investigating Neuronal Activity with Planar Microelectrode Arrays : Achievements and New Perspectives
- Effect of Microfluidic Channel on Sensitivity and Response in Gold-linked Electrochemical Immunoassay