Critical phase of bond percolation on growing networks
スポンサーリンク
概要
- 論文の詳細を見る
The critical phase of bond percolation on the random growing tree is examined. It is shown that the root cluster grows with the system size N as Nψ and the mean number of clusters with size s per node follows a power function ns ∝ s(-τ) in the whole range of open bond probability p. The exponent τ and the fractal exponent ψ are also derived as a function of p and the degree exponent γ and are found to satisfy the scaling relation τ=1 + ψ^[-1]. Numerical results with several network sizes are quite well fitted by a finite-size scaling for a wide range of p and γ, which gives a clear evidence for the existence of a critical phase.
論文 | ランダム
- 宇宙線 (核物理学への招待(第3回))
- (13) コムギ眼紋病 (新称) に対するベノミル剤の防除効果 (東北部会講演要旨)
- I 生体内脂質ホメオスタシスの分子基盤(細胞機能学)
- I 生体内脂質ホメオスタシスの分子基盤(細胞機能学,生命理学研究科)
- III 細胞内脂肪滴における脂肪分解機構の解明(細胞機能学)