Critical phase of bond percolation on growing networks
スポンサーリンク
概要
- 論文の詳細を見る
The critical phase of bond percolation on the random growing tree is examined. It is shown that the root cluster grows with the system size N as Nψ and the mean number of clusters with size s per node follows a power function ns ∝ s(-τ) in the whole range of open bond probability p. The exponent τ and the fractal exponent ψ are also derived as a function of p and the degree exponent γ and are found to satisfy the scaling relation τ=1 + ψ^[-1]. Numerical results with several network sizes are quite well fitted by a finite-size scaling for a wide range of p and γ, which gives a clear evidence for the existence of a critical phase.
論文 | ランダム
- 警察の裏金づくり--犯罪と認めない体質そのものを追及 (「赤旗」記者 日本列島を行く)
- Unstable Side Population Phenotype of Mouse Spermatogonial Stem Cells In Vitro
- 書評 望月重信著『子ども社会学序説--社会問題としての子ども問題を読み解く』
- ジャーナリスト休業宣言(4)鉢呂氏「失言」は虚報だった
- 「スマートテレビ研究会」中村伊知哉氏に聞く (特集 次世代を拓くスマートテレビ)