A Redundancy-Based Measure of Dissimilarity among Probability Distributions for Hierarchical Clustering Criteria
スポンサーリンク
概要
- 論文の詳細を見る
We introduce novel dissimilarity into a probabilistic clustering task to properly measure dissimilarity among multiple clusters when each cluster is characterized by a subpopulation in the mixture model. This measure of dissimilarity is called redundancy-based dissimilarity among probability distributions. From aspects of both source coding and a statistical hypothesis test, we shed light on several of the theoretical reasons for the redundancy-based dissimilarity among probability distributions being a reasonable measure of dissimilarity among clusters. We also elucidate a principle in common for the measures of redundancy-based dissimilarity and Ward's method in terms of hierarchical clustering criteria. Moreover, we show several related theorems that are significant for clustering tasks. In the experiments, properties of the measure of redundancy-based dissimilarity are examined in comparison with several other measures.
- IEEEの論文
IEEE | 論文
- Magnetic and Transport Properties of Nb/PdNi Bilayers
- Supersonic Ion Beam Driven by Permanent-Magnets-Induced Double Layer in an Expanding Plasma
- Surfactant Adsorption on Single-Crystal Silicon Surfaces in TMAH Solution: Orientation-Dependent Adsorption Detected by In Situ Infrared Spectroscopy
- Extended-range FMCW reflectometry using an optical loop with a frequency shifter
- Teachingless spray-painting of sculptured surface by an industrial robot