Numerical fault simulation in Himalayas with 2D finite element method
スポンサーリンク
概要
- 論文の詳細を見る
The nature of the stress field in the Himalaya is examined by the 2D finite element method where linear elastic rheology and plain strain condition are assumed. The Mohr-Coulomb failure criterion has been adopted to analyze the relationship between stress distribution and fault formation. Two profile models are prepared and convergent displacement is imposed on them along the NE-SW horizontal direction. The convergent displacement and physical properties of the rock layer control the distribution,orientation,magnitude and intensity of the stress and fault development. According to the calculated stress pattern,thrust faults are expected to develop in the central Himalaya (model A). Normal and some thrust faults take place in the north-western Himalaya (model B). The results from our numerical experiment are in agreement with those from the seismicity and focal mechanism solution of earthquakes and also with those of M.M.Alam and D.Hayashi (Bull.Fac.Sci.Univ. Ryukyus, 73, 15, 2002) in the central Himalaya.
- 国立極地研究所の論文
著者
-
Howladar M
Univ. Ryukyus Okinawa Jpn
-
Hayashi D
Univ. Ryukyus Okinawa Jpn
-
Howladar M.
Department of Physics and Earth Sciences, University of the Ryukyus
-
Hayashi Daigoro
Department of Physics and Earth Sciences,University of the Ryukyus
-
Hayashi Daigoro
Department Of Physics And Earth Sciences University Of The Ryukyus
関連論文
- Shortening rate at frontal part of Hidaka thrust system by elastic plastic finite element method
- Simulation of role of decollement slope and surface slope angles to the stress field in accretionary wedge
- Estimation of crustal strength in Izu collision zone
- FEM simulation to clarify the Himalayan thrusts system
- Fault analysis around Himalaya by means of 2 dimensional finite element method.
- FE modeling of contemporary tectonic stress in the India-Eurasia collision zone
- Fault development in the Thakkhola half graben : insights from numerical simulation
- Geology, structure and metamorphism of the Mai khola area, southwestern part of Ilam Bazaar, eastern Nepal
- Paleostress transition by fault-striation analysis in the northern and central Ryukyu arc, southwest Japan
- Paleostress analysis around southern area of Okinawa-jima, Central Ryukyu, Japan
- Stress distribution and seismic faulting in the Nepal Himalaya : insights from finite element modeling
- Stress Distribution and Fault Development Around Nepal Himalaya by Means of Finite Element Method
- Numerical fault simulation in Himalayas with 2D finite element method
- Miocene to Pleistocene stress field transitions, around the Miyako-jima Island, South Ryukyu, Japan
- Neotectonics in Southern Ryukyu arc by means of paleostress analysis
- Geology and Three Dimensional Finite Strain Analysis around Annapurna Himal, Central Nepal
- Genesis of Okinawa Trough and thrust development within accretionary prism by means of 2D finite element method
- The technique that constructs strain ellipsoid from three strain ellipses measured on non-parallel sections based on the least square method and the factors that control precision of strain
- Strain Analysis of Kayo Formation around Teniya-zaki, Okinawa-jima
- Fault development around the Red Sea rift system : A finite element approach
- Numerical fault simulation in Himalayas with 2D finite element method