Reversed actrocytic GLT-1 during ischemia is crucial to excitotoxic death of neurons, but contributes to the survival of astrocytes themselves.
スポンサーリンク
概要
- 論文の詳細を見る
During ischemia, the operation of astrocytic/neuronal glutamate transporters is reversed and glutamate and Na+ are co-transported to the extracellular space. This study aims to investigate whether this reversed operation of glutamate transporters has any functional meanings for astrocytes themselves. Oxygen/glucose deprivation (OGD) of neuron/astrocyte co-cultures resulted in the massive death of neurons, and the cell death was significantly reduced by treatment with either AP5 or DHK. In cultured astrocytes with little GLT-1 expression, OGD produced Na+ overload, resulting in the reversal of astrocytic Na+/Ca2+-exchanger (NCX). The reversed NCX then caused Ca2+ overload leading to the damage of astrocytes. In contrast, the OGD-induced Na+ overload and astrocytic damage were significantly attenuated in PACAP-treated astrocytes with increased GLT-1 expression, and the attenuation was antagonized by treatment with DHK. These results suggested that the OGD-induced reversal of GLT-1 contributed to the survival of astrocytes themselves by releasing Na+ with glutamate via reversed GLT-1.
- Springer Netherlandsの論文
Springer Netherlands | 論文
- Developmental regulation of photosynthate distribution in leaves of rice
- Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation
- Removal of estrogenic activity of iso-butylparaben and n-butylparaben by laccase in the presence of 1-hydroxybenzotriazole
- Degradation of Polyethylene and Nylon-66 by the Laccase-Mediator System
- An EntD-like phosphopantetheinyl transferase gene from Photobacterium profundum SS9 complements pfa genes of Moritella marina strain MP-1 involved in biosynthesis of docosahexaenoic acid