Path Model for a Level-Zero Extremal Weight Module over a Quantum Affine Algebra (Combinatorial Aspect of Integrable Systems)
スポンサーリンク
概要
著者
関連論文
- On tensor products of Mirkovic-Vilonen polytopes in type A (表現論と組合せ論--RIMS研究集会報告集)
- 量子アファイン展開環上の extremal ウェイト加群の結晶基底と Littelmann のパス模型
- Mirkovic-Vilonen polytopes lying in a Demazure crystal and an opposite Demazure crystal (Expansion of Combinatorial Representation Theory)
- Crystal structure of the set of Lakshmibai-Seshadri paths of an arbitrarylevel-zero shape(The world of Combinatorial Representation Theory)
- アフィン・リー代数のレベル0整ウエイトに付随したパス模型について(代数的組合せ論とその周辺)
- Path Model for a Level-Zero Extremal Weight Module over a Quantum Affine Algebra (Combinatorial Aspect of Integrable Systems)
- Path Model for a Level-Zero Extremal Weight Module over a Quantum Affine Algebra (Combinatorial Representation Theory and Related Topics)
- STANDARD PATHS FIXED BY A DIAGRAM AUTOMORPHISM (Topics in Young Diagrams and Representation Theory)
- CRYSTAL BASES AND TWINING CHARACTERS (Representation Theory and Harmonic Analysis toward the New Century)
- TWINING CHARACTER FORMULA FOR DEMAZURE MODULES (Topics in Combinatorial Representation Theory)
- GENERALIZED KAC-MOODY ALGEBRA に対する HARISH-CHANDRA HOMOMORPHISM について(無限次元測度論と無限次元群の表現論)
- Towards the Kazhdan-Lusztig multiplicity formula for generalized Kac-Moody algebras(Problems on structure and representations of Lie groups)
- Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras
- Two kinds of constructions of generalized Kac-Moody algebras as subalgebras of Kac-Moody algebras (Harmonic Analysis on Homogeneous Spaces and Representation Theory of Groups)
- Simplicity of a vertex operator algebra whose Griess algebra is the Jordan algebra of symmetric matrices (Finite Groups, Vertex Operator Algebras and Combinatorics)
- path modelとそれに関連した諸結果 (群と環の表現論及び非可換調和解析)
- 量子Bruhatグラフを用いたレベル・ゼロLSパスの表示 (組合せ論的表現論とその周辺)