Dimensional stability and weight changes of tissue conditioners
スポンサーリンク
概要
- 論文の詳細を見る
The dimensional stability of tissue conditioners characterizes the ability of the materials to yield accurate functional impressions of oral mucosa. This study evaluated the linear dimensional changes with time of six tissue conditioners (COE Comfort, FITT, GC Soft-Liner, Hydro-Cast, SR-Ivoseal and Visco-Gel) using a travelling microscope, and relationship between these changes and weight changes. The absorption and solubility of these materials were also determined. The percentage changes in dimension and weight in water storage were measured at 2 (baseline), 8 and 24 h, and 2, 4, 7, 14 and 21 days after specimen preparation. All materials except SR-Ivoseal exhibited shrinkage and weight loss during water storage, whilst SR-Ivoseal exhibited expansion and an increase in weight. The percentage solubility for all materials except SR-Ivoseal was higher than the percentage absorption. A positive linear relationship was found between the percentage changes in linear dimension and those in weight (r=0·797 - 0·986, P < 0·05). Water absorption and solubility of the materials were found to be associated with dimensional changes. The results suggest that the period recommended for forming functional impressions would be 24 h after insertion in the mouth. In addition, it is important to select tissue conditioners suitable for functional impressions because of the wide ranges of dimensional stability among the materials.
- Blackwell Publishingの論文
Blackwell Publishing | 論文
- Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells
- Genetics and Molecular Breeding in Lolium/Festuca
- Genetic and reproductive potential of spermatozoa of diploid and triploid males obtained from interspecific hybridization of Misgurnus anguillicaudatus female with M. mizolepis male
- Ploidy manipulation using diploid sperm in the loach, Misgurnus anguillicaudatus : a review
- Local balance of transforming growth factor-β1 secreted from cholangiocarcinoma cells and stromal-derived factor-1 secreted from stromal fibroblasts is a factor involved in invasion of cholangiocarcinoma