SREBP-1c expression in Schwann cells is affected by diabetes and nutritional status
スポンサーリンク
概要
- 論文の詳細を見る
Our previous work demonstrated that the sterol response element binding proteins (SREBP)-1 and SREBP-2, which are the key regulators of storage lipid and cholesterol metabolism respectively, are highly expressed in Schwann cells of adult peripheral nerves. In order to evaluate the role of Schwann cell SREBPs in myelination and functioning of peripheral nerves we have determined their expression during development, after fasting and refeeding, and in a rodent model of diabetes. Our results show that SREBP-1c and SREBP-2, unlike SREBP-1a, are the major forms of SREBPs present in peripheral nerves. The expression profile of SREBP-2 follows the expression of genes involved in cholesterol biosynthesis, while SREBP-1c is co-expressed with genes involved in storage lipid metabolism. In addition, the expression of SREBP-1c in the endoneurial compartment of peripheral nerves depends on nutritional status and is disturbed in type 1 diabetes. In line with this, insulin elevates the expression of SREBP-1c in primary cultured Schwann cells by activating the SREBP-1c promoter. Taken together, these findings reveal that SREBP-1c expression in Schwann cells responds to metabolic stimuli including insulin and that this response is affected in type 1 diabetes mellitus. This suggests that disturbed SREBP-1c regulated lipid metabolism may contribute to the pathophysiology of diabetic peripheral neuropathy.
- ACADEMIC PRESS INC ELSEVIER SCIENCEの論文
- 2007-08-00
ACADEMIC PRESS INC ELSEVIER SCIENCE | 論文
- Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells
- Glucose-sulfate conjugates as a new phase II metabolite formed by aquatic crustaceans
- Changes in S1P(1) and SIP(2) expression during embryonal development and primitive endoderm differentiation of F9 cells
- Peroxisome proliferator-activated receptor α-independent peroxisome proliferation
- Molecular characteristics of IgA and IgM Fc binding to the Fc alpha/mu R